Mean Approximation by Transformed and Constrained Rational Functions

C. B. Dunham
Computer Science Department, University of Western Ontario, London 72, Canada

Communicated by Joseph L. Walsh

Abstract

The problem of existence of best approximations by transformed and constrained rational functions with respect to a generalized integral norm is studied.

Let X be a compact topological space which is also a measure space and let \int denote the integral over X. Let τ be a continuous mapping of the real line into the nonnegative real line. For a real (finite) measurable g, defined on X, set

$$
\|g\|=\int \tau(g)
$$

Let $\left\{\phi_{1}, \ldots, \phi_{n}\right\},\left\{\psi_{1}, \ldots, \psi_{m}\right\}$ be linearly independent subsets of $C(X)$. Define

$$
R(A, x)=P(A, x) / Q(A, x)=\sum_{k=1}^{n} a_{k} \phi_{k}(x) / \sum_{k=1}^{m} a_{n+k} \psi_{k}(x) .
$$

Let σ be a continuous mapping of the real line into itself. Define

$$
F(A, x)=\sigma(R(A, x))
$$

Let P be a subset of $n+m$ space. The approximation problem is: given f, finite, measurable, to find an $A^{*} \in P$ for which $\|f-F(A, \cdot)\|$ attains its infimum

$$
\rho(f)=\inf \{\|f-F(A, \cdot)\|: A \in P\} .
$$

Such a parameter A^{*} is called best and $F\left(A^{*}, \cdot\right)$ is called a best approximation of f.

The study of linear approximation by τ-"norms" was begun by Walsh and Motzkin [5]. The case where X is an interval, $\sigma(x)=x$, and the only constraint on the parameters A is that $Q(A, \cdot) \not \equiv 0$ is considered in [2]. Cases in which a weight function is used are handled by incorporating the weight function into the measure or integral.

Q with the Zero Measure Property

In case $Q(A, x) \neq 0, F(A, x)$ is well defined. We need a convention for cases in which $Q(A, x)$ has zeros x. We use a hypothesis of Boehm [1] as adapted in [2].

Definition. Q has the zero measure property if $Q(A, \cdot) \neq 0$ implies that the set of zeros of $Q(A, \cdot)$ is of zero measure.

Example. Let $X=[0,1] \times[0,1]$ and $Q(A,(x, y))=a_{n+1}+a_{n+2} x+$ $a_{n+3} y$, then if $Q(A, \cdot) \neq 0$, the zeros of $Q(A, \cdot)$ form at most a line segment in X.

If this condition holds, $F(A, \cdot)$ may need an extra definition on a set of measure zero, if $Q(A, \cdot) \neq 0$. But the values of $F(A, \cdot)$ on a set of measure zero have no effect on the value of $\int \tau(f-F(A, \cdot))$, so it does not matter how we define $F(A, x)$ for the zeros x of $Q(A, x)$.

Since $R(\alpha A, x)=R(A, x)$ for all $\alpha>0$, any rational which does not have its denominator vanishing identically can be normalized so that

$$
\begin{equation*}
\sum_{k=1}^{m}\left|a_{n+k}\right|=1 \tag{1}
\end{equation*}
$$

Define P_{0} to be the set of parameters A satisfying (1) and $Q(A, \cdot) \geqslant 0$.
Lemma 1. Let Q have the zero measure property and there exist B such that $Q(B, \cdot)>0$. Let $Q(A, \cdot) \geqslant 0, Q(A, \cdot) \neq 0$, then $R(A, \cdot)$ is measurable.

Proof. If $Q(A, \cdot)>0, R(A, \cdot)$ is continuous and, therefore, measurable. If $Q(A, \cdot) \geqslant 0, Q(A, \cdot) \not \equiv 0$, define

$$
R\left(A^{k}, x\right)=R\left(\frac{k-1}{k} A+\frac{1}{k} B, x\right)
$$

then $Q\left(A^{k}, \cdot\right)>0$, hence $R\left(A^{k}, \cdot\right) \in C(X), R\left(A^{k}, \cdot\right)$ measurable, and $R\left(A^{k}, x\right)$ converges to $R(A, x)$ if $Q(A, x)=0$, hence $R(A, \cdot)$ is measurable [3, p. 43].

Corollary. Under the same hypotheses, $F(A, \cdot)$ is measurable.
The analog of Lemma 2 of [2] follows.
Lemma 2. Let $|\sigma(t)| \rightarrow \infty$ as $|t| \rightarrow \infty$. If $\left\{\left|\mid A^{k} \|\right\} \rightarrow \infty\right.$ then there is a closed neighborhood N in X such that

$$
\inf \left\{\left|f(x)-\sigma\left(R\left(A^{k}, x\right)\right)\right|: x \in N\right\} \rightarrow \infty \quad \text { as } \quad k \rightarrow \infty
$$

Theorem 1. Let Q have the zero measure property and there exist B with $Q(B, \cdot)>0$. Let $\tau(t) \rightarrow \infty$ as $|t| \rightarrow \infty$ and $|\sigma(t)| \rightarrow \infty$ as $|t| \rightarrow \infty$. Let neighborhoods be of positive measure. Let P be a nonempty closed subset of P_{0}. There exists a best approximation to each bounded measurable function.

Proof. Let $\left\|f-F\left(A^{k}, \cdot\right)\right\|$ be a decreasing sequence with limit $\rho(f)$. By Lemma 2 it can be easily seen that $\left\{\left\|A^{k}\right\|\right\}$ must be a bounded sequence. Thus, $\left\{A^{k}\right\}$ has an accumulation point A^{0}, assume without loss of generality that $\left\{A^{k}\right\} \rightarrow A^{0}$. As P is closed, $A^{0} \in P$ and

$$
\sum_{k=1}^{n}\left|a_{n+k}^{0}\right|=1
$$

It follows that the set of zeros of $Q\left(A^{0}, \cdot\right)$ is of measure zero. If $Q\left(A^{0}, x\right) \neq 0$, $R\left(A^{k}, x\right) \rightarrow R\left(A^{0}, x\right)$ and $\left|f(x)-F\left(A^{k}, x\right)\right| \rightarrow\left|f(x)-F\left(A^{0}, x\right)\right|$. By Fatou's theorem [3, p. 59],

$$
\left\|f-F\left(A^{0}, \cdot\right)\right\| \leqslant \lim _{k \rightarrow \infty} \sup \left\|f-F\left(A^{k}, \cdot\right)\right\|=\rho(f)
$$

Parameter Spaces

We now consider some subsets of P_{0} under the assumption that B exists so that $Q(B, \cdot)>0$.
(1) P_{0} is a closed nonempty set.
(2) Let $\left\{x_{1}, \ldots, x_{p}\right\}$ be a finite subset of X and $\left\{y_{1}, \ldots, y_{p}\right\}$ be real numbers. Define

$$
P_{1}=\left\{A: F\left(A, x_{i}\right)=y_{i}, i=1, \ldots, p\right\} .
$$

When the convention of Boehm [1] is used to assign values to rational functions, P_{1} need not be closed and best approximations need not exist.

Example. Let $\sigma(x)=x, R(A, x)=a_{1} /\left(a_{2}+a_{3} x\right)$. Let

$$
A^{k}=(1 / k, 1 / k,(k-1) / k)
$$

then $R\left(A^{k}, 0\right)=1$. We have $\left\{A^{k}\right\} \rightarrow(0,0,1)=A^{0}$ and since $R\left(A^{0}, x\right)=0$ for $x \neq 0, R\left(A^{0}, 0\right)=0$ by Boehm's convention. Let us approximate f :

$$
\begin{aligned}
f(x) & =1, \\
& =0, \\
& x>0 \\
& x>0
\end{aligned}
$$

on $[0,1]$ under the constraint $R(A, 0)=1$. As $\left.\right|^{\prime} f-R\left(A^{k}, \cdot\right) \rightarrow 0$, a best A would satisfy $\|f-R(A, \cdot)\|=0$. The only rational $R(A, \cdot)$ for which this is true is the zero function, which does not satisfy the constraint.

Goldstein has used a convention [4, pp. 84-89] in which $R(A, x)$ is assigned any desired value when $P(A, x)=Q(A, x)=0$. With this convention P_{1} can be made closed. Let $\left\{A^{k}\right\}$ satisfy the constraints

$$
\begin{equation*}
F\left(A^{k}, x_{i}\right)=y_{i}, \quad i=1, \ldots, p \tag{2}
\end{equation*}
$$

and $\left\{A^{k}\right\} \rightarrow A$. If $Q\left(A, x_{i}\right) \neq 0, F\left(A^{k}, x_{i}\right) \rightarrow F\left(A, x_{i}\right)$. If $Q\left(A, x_{i}\right)=0$, $P\left(A, x_{i}\right) \neq 0$, then $\left|F\left(A^{k}, x_{i}\right)\right| \rightarrow \infty$. If $P\left(A, x_{i}\right)=Q\left(A, x_{i}\right)=0$ we assign to $F\left(A, x_{i}\right)$ the value y_{i}. It follows that P_{1} is closed. As denominators are not a problem in linear approximation $(m=1), P_{1}$ is closed in transformed linear approximation.
(3) Let u, v be functions mapping X into the extended real line, $u \leqslant v$, and

$$
P_{2}=\{A: u \leqslant F(A, \cdot) \leqslant v\} .
$$

This choice of parameters is associated with the problem of constrained approximation. Special cases of interest are those of one-sided approximation in which $u=-\infty, v=f$ or $u=f, v=+\infty$. In dealing with P_{2} we use also the convention of Boehm [1].

Lemma 3. Let Q have the nonzero dense property and Boehm's convention be used. Let u be lower semicontinuous into the extended real line and v be upper semicontinuous into the extended real line, then $P_{2} \cap P_{0}$ is closed.

Proof. Let $\left\{A^{k}\right\}$ be a sequence in $P_{2} \cap P_{0}$ and $\left\{A^{k}\right\} \rightarrow A$. Let $Q(A, x) \neq 0$, then $\left\{R\left(A^{k}, x\right)\right\} \rightarrow R(A, x)$, hence $\left\{F\left(A^{k}, x\right)\right\} \rightarrow F(A, x)$. We, therefore, have $u(x) \leqslant F(A, x) \leqslant v(x)$ for such x. Let $Q(A, x)=0$. There exists a sequence $\left\{x_{k}\right\} \rightarrow x$ such that $Q\left(A, x_{k}\right) \neq 0$ and

$$
\lim \sup \{R(A, y): y \rightarrow x, Q(A, y) \neq 0\}=\lim _{k \rightarrow \infty} R\left(A, x_{k}\right)
$$

hence

$$
F(A, x)=\sigma(R(A, x))=\sigma\left(\lim _{x_{k} \rightarrow x} R\left(A, x_{k}\right)\right)=\lim _{x_{k} \rightarrow x} \sigma\left(R\left(A, x_{k}\right)\right)
$$

But $\sigma\left(R\left(A, x_{k}\right) \geqslant u\left(x_{k}\right)\right.$ so by lower semicontinuity of $u, \sigma(R(A, x) \geqslant u(x)$ Similarly $\sigma(R(A, x)) \leqslant v(x)$.
(4) Let $J=\left\{j_{1}, \ldots, j_{p}\right\}$ be a subset of $\{1,2, \ldots, n+m\}$, and let $\left\{s_{1}, \ldots, s_{p}\right\}$ be a set of signs $(+1$ or -1$)$. Let P_{3} be the set of coefficient vectors A such that

$$
\operatorname{sgn}\left(a_{k}\right)=s_{k} \text { or } 0, \quad k \in J
$$

P_{3} is closed, hence $P_{0} \cap P_{3}$ is closed. A special case is where all coefficients of A are to be nonnegative [6].
(5) Let X be a compact subset of the real line and Y be a closed subset of X. Let P_{4} be the set of coefficient vectors A such that $R(A, \cdot)$ is monotonic increasing on Y. If Boehm's convention [1] can be used on Y (which implies that Y has no isolated points) then $P_{4} \cap P_{0}$ is closed.

Suppose not then there exists a sequence $\left\{A^{k}\right\} \subset P_{4} \cap P_{0}$ and $A \notin P_{4}$ such that $\left\{A^{k}\right\} \rightarrow A$. Hence there are points $x, y \in Y, x<y$ and $\epsilon>0$ such that $R(A, x)-R(A, y)>\epsilon$. By Boehm's convention there are $x^{\prime}, y^{\prime} \in Y$, $x^{\prime}<y^{\prime}$ such that $Q\left(A, x^{\prime}\right)>0, Q\left(A, y^{\prime}\right)>0$, and $R\left(A, x^{\prime}\right)-R\left(A, y^{\prime}\right)>\epsilon / 2$. For all k sufficiently large we have $R\left(A^{k}, x^{\prime}\right)-R\left(A^{k}, y^{\prime}\right)>\epsilon / 4$, contradicting monotonicity of $R\left(A^{k}, \cdot\right)$ on Y.

We may want $F(A, \cdot)$ to be monotonic. If σ is monotonic we need merely make $R(A, \cdot)$ monotonic.

Admissible Approximation

A transformed rational function is called admissible if it can be expressed as $\sigma(R(A, \cdot)), Q(A, \cdot)>0$. In some cases we can show that a best approximation exists which is admissible, and hence the problem of approximation by admissible transformed rational functions has a solution.

Definition. (R, P) has the admissible property if for given $A \in P$, $\int \tau(f-F(A, \cdot))<\infty$ implies that there is $B \in P, \quad Q(B, \cdot)>0$ with $R(A, \cdot)-R(B, \cdot)=0$ almost everywhere.

Corollary. Let the hypotheses of the theorem hold and (R, P) have the admissible property. There exists a best admissible approximation to all measurable bounded functions.

Proof. By the theorem there exists a best approximation $F(A, \cdot), A \in P$. If $\int \tau\left(f^{\prime}-F(A, \cdot)\right)<\infty$ there is $B \in P, Q(B, \cdot)>0$ such that $F(B, \cdot)-$ $F(A, \cdot)=0$ almost everywhere, and hence $\int \tau(f-F(A, \cdot))=\int \tau(f-F(B, \cdot))$. We apply the corollary to the most common case of interest, which covers all L_{p} norms, $1 \leqslant p<\infty$, on an interval $X=[a, b]$.

Theorem. Let there exist α, K such that $\tau(t) \geqslant \alpha|t|$ for all $|t| \geqslant K$. Let there exist β, M such that $|\sigma(t)| \geqslant \beta|t|$ for $|t| \geqslant M$. Let f be a bounded measurable function on $[a, b]$. Let

$$
R(A, x)=P(A, x) / Q(A, x)=\sum_{k=1}^{n} a_{k} x^{k-1} / \sum_{k=1}^{m} a_{n+k} x^{k-1}
$$

Let P be a closed subset of P_{0} and be such that if $A \in P, R(A, \cdot)$ is pole free, then there is $B \in P$ with $Q(B, \cdot)>0, R(A, \cdot)=R(B, \cdot)$. Let there exist $A \in P$ with $\|f-F(A, \cdot)\|<\infty$. There exists an admissible best approximation with parameter in P to f.

Proof. Let $r \in R_{m-1}^{n-1}[a, b]$ have a pole. Let

$$
L=\{x:|f(x)-\sigma(r(x))| \geqslant K\}
$$

then
$\|f-\sigma(r)\| \geqslant \int_{\sim L} \tau(f-\sigma(r))+\int_{L} \alpha|f-\sigma(r)| \geqslant \alpha\left[\int_{L}|\sigma(r)|-\int_{L}|f|\right]$.
Let $N=\{x:|r(x)| \geqslant M\}$ then

$$
\int_{L}|\sigma(r)| \geqslant \int_{L \cap(\sim M)}|\sigma(r)|+\beta \int_{L \cap M}|r| .
$$

As the integral of $|r|$ over any neighbourhood of the pole is infinite, $\int_{L}|\sigma(r)|=\infty$ and $\|f-\sigma(r)\|=\infty$. It follows that if $\|f-F(A, \cdot)\|<\infty$, $R(A, \cdot)$ is pole-free, and there is admissible $R(B, \cdot)$ with $R(A, x)=R(B, x)$ for x not a zero of $Q(A, \cdot)$. Under Boehm's convention $R(A, \cdot)=R(B, \cdot)$.

The hypothesis on P on the theorem is satisfied by P_{0} and $P_{0} \cap P_{2}$. The example given previously for P_{1} shows that the theorem does not hold for $P=P_{1} \cap P_{0}$. The argument of the theorem cannot be extended to cover all transformers σ, for in the case $\sigma(x)=\log (x)$
$\int_{0}^{1} \log (1 / x) d x=\int_{\infty}^{1} \log (t) d(1 / t)=\int_{1}^{\infty}\left(\log (t) / t^{2}\right) d t=[(1 / t)(\log (t)-1)]_{1}^{\infty}=1$
and approximations with a pole do not have infinite error.

Approximation on Finite Point Sets

The zero measure property does not hold if X has isolated points of positive measure and our previous theory does not apply. In the case X is a finite point set we can use an alternative convention to obtain existence. Let X be a p point set, say $1,2, \ldots, p$ then the norm is of the form

$$
\|g\|=\sum_{k=1}^{p} w_{i} \tau(g(i)), \quad w_{i}>0
$$

We define

$$
\begin{aligned}
F(A, i) & =\sigma(\infty), \quad P(A, i) \neq 0, \quad Q(A, i)=0 \\
& =f(i), \quad P(A, i)=Q(A, i)=0
\end{aligned}
$$

using a convention similar to that of Goldstein [4, pp. 84ff.]. The analog of Lemma 2 follows.

Lemma 4. If $\left\|A^{k}\right\| \rightarrow \infty$ and $|\sigma(t)| \rightarrow \infty$ as $\mid t \rightarrow \infty$ then there exists an integer $i, 1 \leqslant i \leqslant p$ such that

$$
\left|f(i)-F\left(A^{k}, i\right)\right| \rightarrow \infty .
$$

Let \hat{P} be the set of parameters A satisfying the normalization (1).
Theorem. Let $\tau(t) \rightarrow \infty$ as $|t| \rightarrow \infty$ and 0 be a minimum for τ. Let $|\sigma(t)| \rightarrow \infty$ as $|t| \rightarrow \infty$. Let P be a nonempty closed subset of P_{0} or P. There exists a best approximation to each bounded function on finite X.

Proof. Let $\left\{A^{k}\right\} \subset P$ and $\left\{\left\|f-F\left(A^{k}, \cdot\right)\right\|\right\}$ be a decreasing sequence with $\lim \rho(f)=\inf \{\|f-F(A, \cdot)\|: A \in P\}$. From Lemma 4 it is seen that $\left\{\left\|A^{k}\right\|\right\}$ is a bounded sequence with accumulation point $A \in P$. By taking a subsequence if necessary we can assume that $\left\{A^{k}\right\} \rightarrow A$. If $Q(A, \cdot)$ vanishes on an integer i where $P(A, \cdot)$ does not, $\left\{P\left(A^{k}, i\right) / Q\left(A^{k}, i\right)\right\} \rightarrow \infty$ as $k \rightarrow \infty$, hence $\left\{w_{i} \tau\left(f(i)-F\left(A^{k}, i\right)\right)\right\} \rightarrow \infty,\left\{\left\|f-F\left(A^{k}, \cdot\right)\right\|\right\} \rightarrow \infty$, contrary to hypothesis. Hence if $Q(A, i)=0, P(A, i)=0$ also and $F(A, i)=f(i)$. We have

$$
\begin{aligned}
w_{i} \tau(f(i)-F(A, i)) & =w_{i} \min \tau \leqslant w_{i} \tau\left(f_{i}-F\left(A^{k}, i\right)\right),, & & Q(A, i)=0 \\
& =\lim _{k \rightarrow \infty} w_{i} \tau\left(f(i)-F\left(A^{k}, i\right)\right), & & Q(A, i) \neq 0
\end{aligned}
$$

Combining these we get

$$
\|f-F(A, \cdot)\| \leqslant \lim _{k \rightarrow \infty}\left\|f-F\left(A^{k}, \cdot\right)\right\|=\rho(f)
$$

Other Transformers

There are transformers σ of interest which do not satisfy the condition $|\sigma(t)| \rightarrow \infty$ as $|t| \rightarrow \infty$. One such transformer is $\sigma(t)=\exp (t)$.

Theorem. Let P, Q have the zero measure property and there exist B with $Q(B, \cdot)>0$. Let $\tau(t) \rightarrow \infty$ as $|t| \rightarrow \infty$. Let $\sigma(t) \rightarrow \infty$ as $t \rightarrow \infty$ and $\sigma(t)$ tend to a finite limit Ω as $t \rightarrow-\infty$. Let P be a nonempty closed subset of P_{0}. If we add Ω to the family of approximations, a best approximation exists to each bounded measurable function.

Proof. Let $\left\|f-F\left(A^{k}, \cdot\right)\right\|$ be a decreasing sequence with limit $\rho(f)$. We have two possibilities. First, $\left\{\left\|A^{k}\right\|\right\}$ can be an unbounded sequence, then by
taking a subsequence if necessary we can assume that $A^{k} \rightarrow \infty$. Define $B^{k}=A^{k} /\left|A^{k}\right|$ then $\left\{B^{k}=1\right.$ and $\left\{B^{k}\right\}$ has an accumulation point B, $|B|==1$. Assume without loss of generality that $\left\{B^{h}\right\} \rightarrow B$. The sequence $\left\{\left(a_{n+1}^{k}, \ldots, a_{n+n}^{k}\right)\right\}$ is bounded and has an accumulation point C, assume that the sequence converges to C. By the normalization (1), $Q(C, \cdot) \neq 0$. We claim that for x not a zero of $Q(C, \cdot), P(B, x) / Q(C, x) \leq 0$. Suppose not, let $P(B, x) / Q(C, x)>0$ then there is $\epsilon>0$ and a neighborhood N of x such that $P(B, y) / Q(C, y)>\epsilon$ for $y \in N$, hence for all k sufficiently large $R\left(A^{k}, y\right)$ $\left|A^{k}\right| \epsilon / 2$ for $y \in N$. It follows that

$$
\inf \left\{\left|f(y)-\sigma\left(R\left(A^{k}, y\right)\right)\right|: y \in N\right\} \rightarrow \infty
$$

hence $\left\|f-R\left(A^{k}, \cdot\right)\right\| \rightarrow \infty$, giving a contradiction. Hence $P(B, \cdot) / Q(C, \cdot)$ is negative almost everywhere and $\sigma\left(R\left(A^{k}, \cdot\right)\right) \rightarrow \Omega$ almost everywhere. By Fatou's theorem [3, p. 59], $\|f-\Omega\|=\rho(f)$. The second possibility is that $\left\{\left\|A^{k}\right\|\right\}$ is bounded and that is handled by an earlier theorem.

In cases of practical interest Ω may never be best. Let us suppose that the range of σ is (Ω, ∞) and the family of rationals includes all constant functions. Then we would expect the range of f to be in (Ω, ∞) and then there exists a constant μ between Ω and f. If τ is strictly monotonic on $(-\infty, 0)$ and $(0, \infty), \mu$ is a better approximation.

It appears that we may be able to guarantee the existence of a best admissible approximation only in the case of transformed linear approximation ($m=1$). Consider for example the case where $X=[0,1]$, $\sigma(t)=\exp (t)$, and R is a polynomial rational approximating function. The approximation $F(A, x)=\exp (-1 / x)$ is continuous on $[0,1]$, is the uniform limit of a sequence of admissible approximations, and corresponds to no admissible approximation.

References

1. B. Bоенм, Existence of best rational Tschebycheff approximations, Pacific J. Math. 15 (1965), 19-28.
2. C. B. Dunham, Existence of best mean rational approximations, J. Approximation Theory 4 (1971), 269--273.
3. A. N. Kolmogorov and S. V. Fomin, "Functional Analysis," Vol. 2, Graylock, Albany, NY, 1961.
4. J. R. Rice, "The Approximation of Functions," Vol. 2, Addison-Wesley, Reading, MA, 1969.
5. J. L. Walsh and T. S. Motzkin, Best approximations within a linear family on an interval, Proc. Nat. Acad. Sci. 46 (1960), 1225-1233.
6. W. B. Jurkat and G. G. Lorentz, Uniform approximation by polynomials with positive coefficients, Duke Math. J. 28 (1960), 463-474.
