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The problem of existence of best approximations by transformed and con­
strained rational functions with respect to a generalized integral norm is studied.

Let X be a compact topological space which is also a measure space and let
f denote the integral over X. Let r be a continuous mapping of the real line
into the nonnegative real line. For a real (finite) measurable g, defined on X,
set

II g il = J reg).

Let {CPl ,... , CPn}, {ifil ,... , ifim} be linearly independent subsets of C(X). Define

n m

R(A, x) = peA, x)/Q(A, x) = I a/;;cp/;;(x)/I an+kifi/;;(x).
/;;~l /;;~l

Let a be a continuous mapping of the real line into itself. Define

F(A, x) = a(R(A, x)).

Let P be a subset of n + m space. The approximation problem is: given f,
finite, measurable, to find an A * E P for which 111- F(A, ')11 attains its
infimum

p(j) = inf{lil - F(A, ')11: A E P}.

Such a parameter A * is called best and F(A *, .) is called a best approximation
off

The study of linear approximation by r-"norms" was begun by Walsh and
Motzkin [5]. The case where X is an interval, a(x) = x, and the only
constraint on the parameters A is that Q(A, .) $ 0 is considered in [2].
Cases in which a weight function is used are handled by incorporating the
weight function into the measure or integral.
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Q WITH THE ZERO MEASURE PROPERTY

In case Q(A, x) eft 0, F(A, x) is well defined. We need a convention for
cases in which Q(A, x) has zeros x. We use a hypothesis of Boehm [1] as
adapted in [2].

DEFINITION. Q has the zero measure property if Q(A, .) =f=. °implies that
the set of zeros of Q(A, .) is of zero measure.

EXAMPLE. Let X = [0,1] X [0, 1] and Q(A, (x, y)) = an+! + an+2x +
an+3 y, then if Q(A, .) ci= 0, the zeros of Q(A, .) form at most a line segment
in X.

If this condition holds, F(A, .) may need an extra definition on a set of
measure zero, if Q(A, .) =f=. 0. But the values of F(A, .) on a set of measure
zero have no effect on the value of JT(f - F(A, ')), so it does not matter how
we define F(A, x) for the zeros x of Q(A, x).

Since R(exA, x) = R(A, x) for all ex > 0, any rational which does not have
its denominator vanishing identically can be normalized so that

'In

L I an+Tc I = 1.
k~l

Define Po to be the set of parameters A satisfying (1) and Q(A, 0) ;? 0.

(1)

LEMMA 1. Let Q have the zero measure property and there exist B such that
Q(B, .) > 0. Let Q(A, .) ;? 0, Q(A, .) =;i= 0, then R(A, .) is measurable.

Proof If Q(A, .) > 0, R(A, .) is continuous and, therefore, measurable.
If Q(A, .) ;? 0, Q(A, .) ci= 0, define

(
k-l 1 )

R(Ak, x) = R k A + k B, x

then Q(Ak, .) > 0, hence R(Ak, .) E C(X), R(Ak, .) measurable, and R(Ak, x)
converges to R(A, x) if Q(A, x) = 0, hence R(A, .) is measurable [3, p. 43].

COROLLARY. Under the same hypotheses, F(A, .) is measurable.

The analog of Lemma 2 of [2] follows.

LEMMA 2. Let I u(t)1 -+ 00 as [ t I -+ 00. If {II Ak II} -+ 00 then there is a
closed neighborhood N in X such that

inf{1 f(x) - u(R(Ak, x))I: x E N} -+ 00 as k -+ 00.
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THEOREM 1. Let Q have the zero measure property and there exist B with
Q(B, .) > O. Let T(t) -+ 00 as I t I -+ 00 and I a(t)1 -+ 00 as I t I -+ 00. Let
neighborhoods be ofpositive measure. Let P be a nonempty closed subset ofPo .
There exists a best approximation to each bounded measurable function.

Proof Let Ilf - F(Ak, ')11 be a decreasing sequence with limit p(f). By
Lemma 2 it can be easily seen that {II Ak II} must be a bounded sequence. Thus,
{Ak} has an accumulation point AO, assume without loss of generality that
{Ak}--+ AO. As P is closed, AO E P and

n

L [a~+k I = 1.
k=l

It follows that the set of zeros of Q(AO, .) is of measure zero. If Q(AO, x) =1= 0,
R(Ak, x) -+ R(AO, x) and I f(x) - F(Ak, x)1 -+ If(x) - F(AO, x)l. By Fatou's
theorem [3, p. 59],

Ilf - F(AO, ')11 ~ lim sup Ilf - F(A"', ')11 = p(f).
k->oo

PARAMETER SPACES

We now consider some subsets of Po under the assumption that B exists so
that Q(B, .) > O.

(1) Po is a closed nonempty set.

(2) Let {Xl ,..., xp} be a finite subset of X and {Yl ,..., Yp} be real
numbers. Define

PI = {A: F(A, Xi) = Yi' i = 1,... , p}.

When the convention of Boehm [1] is used to assign values to rational
functions, PI need not be closed and best approximations need not exist.

EXAMPLE. Let a(x) = x, R(A, x) = al/(a2 + aax). Let

Ak = (1lk, 11k, (k - l)lk)

then R(A"',O) = 1. We have {Ak} -+ (0,0, 1) = AO and since R(AO, x) = 0
for x =1= 0, R(AO, 0) = 0 by Boehm's convention. Let us approximate f:

f(x) = 1,

= 0,

x = 0;

x >0,
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on [0, I] under the constraint R(A, 0) = I. As If - R(Ak, -)1 --+ 0, a best A
would satisfy III - R(A, -)11 == 0. The only rational R(A, .) for which this is
true is the zero function, which does not satisfy the constraint.

Goldstein has used a convention [4, pp. 84~89] in which R(A, x) is assigned
any desired value when peA, x) = Q(A, x) = 0. With this convention PI can
be made closed. Let {A"} satisfy the constraints

F(Ak, x;) = Yi , i = l, ... ,p, (2)

and {Ale} --+ A. If Q(A, Xi) cF 0, F(Ak, Xi) --+ F(A, x;). If Q(A, Xi) = 0,
peA, x,-) cF 0, then IF(Ak, xi)1 --+ 00. If peA, Xi) = Q(A, Xi) = °we assign
to F(A, Xi) the value Yi . It follows that PI is closed. As denominators are not
a problem in linear approximation (m = I), PI is closed in transformed linear
approximation.

(3) Let u, v be functions mapping X into the extended real line, u :S;; v,
and

P2 = {A: u :S;; F(A, .) :S;; v}.

This choice of parameters is associated with the problem of constrained
approximation. Special cases of interest are those of one-sided approximation
in which u = - 00, v = lor u = f, v = + 00. In dealing with P2 we use also
the convention of Boehm [I].

LEMMA 3. Let Q have the nonzero dense property and Boehm's convention
be used. Let u be lower semicontinuous into the extended real line and v be
upper semicontinuous into the extended real line, then P2 n Po is closed.

Proof Let {A"} be a sequence in P2 n Po and {Ale} --+ A. Let Q(A, x) cF 0,
then {R(A", x)} --+ R(A, x), hence {F(Ak, x)} --+ F(A, x). We, therefore, have
u(x) :c( F(A, x) :S;; vex) for such x. Let Q(A, x) = 0. There exists a sequence
{x,,} --+ x such that Q(A, x,,) eF °and

lim sup{R(A, y): Y --+ x, Q(A, y) cF o} = lim R(A, Xk),
k-HfJ

hence

F(A, x) = a(R(A, x)) = a(lim R(A, x,,)) = lim a(R(A, Xk))'
Xk~X Xk---')X

But a(R(A, Xk) ~ u(x,,) so by lower semicontinuity of u, a(R(A, x) ~ u(x)
Similarly a(R(A, x)) :S;; vex).

(4) Let J = {it ,... ,jp} be a subset of {l, 2, ... , n + m}, and let {SI , ... , sp}
be a set of signs (+ I or -I). Let P3 be the set of coefficient vectors A such
that

sgn(a,J =, s" or 0, k E J.
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P3 is closed, hence Po n P3 is closed. A special case is where all coefficients
of A are to be nonnegative [6].

(5) Let X be a compact subset of the real line and Y be a closed subset
of X. Let P4 be the set of coefficient vectors A such that R(A, .) is monotonic
increasing on Y. If Boehm's convention [1] can be used on Y (which implies
that Y has no isolated points) then P4 n Po is closed.

Suppose not then there exists a sequence {Ak} C P4 n Po and A $ P4

such that {Ak} -+ A. Hence there are points x, y EO Y, X < Y and E > 0 such
that R(A, x) - R(A, y) > E. By Boehm's convention there are x', y' EO Y,
x' < y' such that Q(A, x') > 0, Q(A, y') > 0, and R(A, x') - R(A, y') > E/2.
For all k sufficiently large we have R(Ak, x') - R(Ak, y') > E/4, contra­
dicting monotonicity of R(Ak, .) on Y.

We may want F(A, .) to be monotonic. If a is monotonic we need merely
make R(A, .) monotonic.

ADMISSIBLE ApPROXIMATION

A transformed rational function is called admissible if it can be expressed
as a(R(A, '», Q(A, .) > O. In some cases we can show that a best approxi­
mation exists which is admissible, and hence the problem of approximation
by admissible transformed rational functions has a solution.

DEFINITION. (R, P) has the admissible property if for given A EO P,
f r(f - F(A, .» < 00 implies that there is B EO P, Q(B,') > 0 with
R(A, .) - R(B, .) = 0 almost everywhere.

COROLLARY. Let the hypotheses of the theorem hold and (R, P) have the
admissible property. There exists a best admissible approximation to all
measurable boundedfunctions.

Proof By the theorem there exists a best approximation F(A, '), A EO P. If
f r(f - F(A, .» < 00 there is B EO P, Q(B, -) > 0 such that F(B,')­
F(A, .) = 0 almost everywhere, and hence f r(f - F(A, .» = f r(f - F(B, .».
We apply the corollary to the most common case of interest, which covers
all L p norms, I ~ P < 00, on an interval X = [a, b].

THEOREM. Let there exist ex, K such that ret) ~ ex I t 1for alii t I ~ K. Let
there exist fJ, M such that I a(t)1 ~ fJl t I for I t I ~ M. Let f be a bounded
measurable function on [a, b]. Let

R(A, x) = peA, x)/Q(A, x) = f akxk-1/ f an+kxk-1.
k~l k~l
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Let P be a closed subset of Po and be such that if A E P, R(A, .) is pole free,
then there is B E P with Q(B, .) > 0, R(A, .) = R(B, .). Let there exist A E P
with Ilf - F(A, ·)11 < 00. There exists an admissible best approximation with

parameter in P to f

Proof Let r E R::;::.~[a, b] have a pole. Let

L = {x: If(x) - a(r(x» I ~ K},

then

Ilf - a(r)11 ~ tL T(f - a(r» + t ex If - a(r)1 ~ ex [t I a(r) I - t If I]'

Let N = {x: I r(x) I ~ M} then

I I a(r)1 ~ J I a(r)1 + f3 fir I.
L Ln(~M) LnM

As the integral of I r lover any neighbourhood of the pole is infinite,
iL I a(r)1 = 00 and Ilf - a(r)il = 00. It follows that if Ilf - F(A, ·)11 < 00,

R(A, .) is pole-free, and there is admissible R(B, .) with R(A, x) = R(B, x) for
x not a zero of Q(A, .). Under Boehm's convention R(A, .) = R(B, ').

The hypothesis on P on the theorem is satisfied by Po and Po n P2 • The
example given previously for PI shows that the theorem does not hold for
P = PI n Po . The argument of the theorem cannot be extended to cover all
transformers a, for in the case a(x) = log(x)

II log(l/x)dx = r log(t)d(l/t) = {) (log(t)/t 2) dt = [(l/t)(log(t) - l)]~ = 1
o 00 1

and approximations with a pole do not have infinite error.

ApPROXIMATION ON FINITE POINT SETS

The zero measure property does not hold if X has isolated points of
positive measure and our previous theory does not apply. In the case X is a
finite point set we can use an alternative convention to obtain existence. Let X
be a p point set, say I, 2, ... , p then the norm is of the form

p

II g II = L WiT(g(i»,
k~1

We define

F(A, i) = a( (0),

= f(i),

peA, i) # 0, Q(A, i) = 0,

peA, i) = Q(A, i) = 0,
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using a convention similar to that of Goldstein [4, pp. 84ff.]. The analog of
Lemma 2 follows.

LEMMA 4. If II Ak II -+ 00 and I a(t)1 -+ 00 as I t I -+ 00 then there exists
an integer i, I ~ i ~ p such that

I f(i) - F(Ak, i)1 -+ 00.

Let P be the set of parameters A satisfying the normalization (1).

THEOREM. Let T(t) -+ 00 as I t I -+ 00 and 0 be a minimum for T. Let
I a(t)1 -+ 00 as I t I -+ 00. Let P be a nonempty closed subset of Po or P. There
exists a best approximation to each boundedfunction on finite X.

Proof Let {Ak} C P and {Ilf - F(Ak, ·)II} be a decreasing sequence with
lim p(f) = inf{llf - F(A, ·)11: A E P}. From Lemma 4 it is seen that {II Ak II}
is a bounded sequence with accumulation point A E P. By taking a subsequence
if necessary we can assume that {Ak} -+ A. If Q(A, .) vanishes on an integer i
where P(A,·) does not, {peAk, i)/Q(Ak, i)} -+ 00 as k -+ 00, hence
{WiT(f(i) - F(Ak, i))} -+ 00, {Ilf - F(Ak, ·)II} -+ 00, contrary to hypothesis.
Hence if Q(A, i) = 0, peA, i) = 0 also and F(A, i) = f(i). We have

It'iT(j(i) - F(A, i)) = Wi min T ~ WiT(fi - F(Ak, i)),

= lim WiT(j(i) - F(Ak, i)),
k->cxo

Combining these we get

Ilf - F(A, ')11 ~ lim Ilf - F(Ak, ')11 = p(f).
k->cxo

OTHER TRANSFORMERS

Q(A, i) = 0

Q(A, i) =1= 0

There are transformers a of interest which do not satisfy the condition
I a(t)1 -+ 00 as I t I -+ 00. One such transformer is aCt) = exp(t).

THEOREM. Let P, Q have the zero measure property and there exist B with
Q(B, .) > O. Let T(t) -+ 00 as I t I -+ 00. Let aCt) -+ 00 as t -+ 00 and aCt)
tend to afinite limit Q as t -+ - 00. Let P be a nonempty closed subset of Po.
Ifwe addQ to thefamily ofapproximations, a best approximation exists to each
bounded measurable function.

Proof Let Ilf - F(Ak, ·)11 be a decreasing sequence with limit p(f). We
have two possibilities. First, {II Ak II} can be an unbounded sequence, then by
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taking a subsequence if necessary we can assume that AI, ---+ U'"'. Define
Bk = Ah'j,1 AI, I then I Bk I and {BI} has an accumulation point B,
I' B= 1. Assume without loss of generality that fBI,} ---+ B. The sequence
{(a~+1 ,... , a~+m)} is bounded and has an accumulation point C, assume that
the sequence converges to C. By the normalization ( I), Q(C, .) .•/= 0. We claim
that for x not a zero of Q(C, '), PCB, x)/Q(C, x) 0. Suppose not, let
PCB, x)/Q(C, x) °then there is E °and a neighborhood N of x such that
PCB, y)/Q(C, y) > E for y fCC N, hence for all k sufficiently large R(A", y)
I: Ak I E/2 for y fCC N. It follows that

inf{1 fey) - a(R(Ak, Y»I: y fCC N} ---+ 00,

hence [If - R(Ak, ')11 ---+ 00, giving a contradiction. Hence PCB, ')/Q(C, .) is
negative almost everywhere and a(R(A", .») ---+ D almost everywhere. By
Fatou's theorem [3, p. 59], Ilf - D II = p(f). The second possibility is that
{IIAIc II} is bounded and that is handled by an earlier theorem.

In cases of practical interest D may never be best. Let us suppose that the
range of a is (D, 00) and the family of rationals includes all constant functions.
Then we would expect the range off to be in (D, 00) and then there exists
a constant fL between D and f If T is strictly monotonic on (- 00, 0) and
(0, 00), fL is a better approximation.

It appears that we may be able to guarantee the existence of a best
admissible approximation only in the case of transformed linear approxi­
mation (m = 1). Consider for example the case where X = [0, I],
aCt) = exp(t), and R is a polynomial rational approximating function. The
approximation F(A, x) = exp(-I/x) is continuous on [0,1], is the uniform
limit of a sequence of admissible approximations, and corresponds to no
admissible approximation.
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